翻訳と辞書 |
Jacquet module : ウィキペディア英語版 | Jacquet module In mathematics, the Jacquet module ''J''(''V'') of a linear representation ''V'' of a group ''N'' is the space of co-invariants of ''N''; or in other words the largest quotient of ''V'' on which ''N'' acts trivially, or the zeroth homology group H0(''N'',''V''). The Jacquet functor ''J'' is the functor taking ''V'' to its Jacquet module ''J''(''V''). Use of the phrase "Jacquet module" often implies that ''V'' is an admissible representation of a reductive algebraic group ''G'' over a local field, and ''N'' is the unipotent radical of a parabolic subgroup of ''G''. In the case of ''p''-adic groups they were studied by . ==References==
*
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Jacquet module」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|